By means of linear matrix inequalities, sufficient conditions are presented to realize the input-output energy decoupling for a linear singular system so as to feature the closed-loop system with the performance above and admissibility (i.
考虑线性广义系统的输入 输出能量解耦问题,即从输入 输出的能量关系上实现解耦,使得任何一个输入能量主要控制对应的一个输出的能量,对其他输出能量的影响尽可能小·利用线性矩阵不等式,给出线性广义系统能够输入 输出能量解耦的充分条件,使得闭环系统具有上述性能,同时也是容许(即正则,稳定,无脉冲)的,并且基于线性不等式的解提出了相应的控制器设计方法,最后利用结果提出线性广义系统输入 输出能量解耦的算法并给出一个数值算例
This text gives an overview to the admissibility of unbounded control and observation operators for-semigroups in terms of the infinitedimensional linear systems theory.
本文综述无限维线性系统理论中无界线性控制与观测算子的容许性。
By means of linear matrix inequalities and generalized algebra Riccati inequalities, a sufficient condition is derived as such that a prescribed discrete-time singular system is admissible and strictly passive.
将无源的概念从非线性系统扩展到离散广义系统 ,进而研究离散广义系统在有界能量外部输入作用下的无源控制问题· 利用线性矩阵不等式和广义代数Riccati不等式 ,给出离散广义系统容许且严格无源的充分条件 ,并且基于此条件给出存在状态反馈控制器 ,使得闭环系统容许且严格无源的充分条件 ,同时提出了相应的控制器设计· 最后的数值算例说明了文中结论的有效
The resulting controllers guaranteeing the closed loop descriptor systems are admissible and an H ∞ -norm bound on disturbance attenuation.
所设计的H∞ 控制器使得闭环广义系统容许而且它的传递函数H∞ 范数有
The design guarantee the closed loop descriptor systems are admissible and an H ∞ norm bound on disturbance attenuation when the closed loop descriptor systems are normal and some controllers outage.
所设计的控制器保证在正常情况下和在某些元件出现故障的情况下 ,闭环广义系统容许而且它的传递函数的 H∞ 范数有