Extinction of Solution for a Class of Ginzbur—Landau Models Reaction-Diffusion Equation in Population Problems;
人口问题中3维Ginzbur-Landau模型方程解的熄灭现象
Extinction and Positivity for p-Laplacian Parabolic Equation and Global Existence for p-Laplacian Parabolic System;
p-Laplace抛物方程解的熄灭与正性及其方程组的整体存在性
The extinction phenomenon of solution is one of the important qualities of nonlinear parabolic partial differential equation,as it explains comprehensive realistic backgrounds.
解的熄灭现象是非线性抛物型方程解的一个重要性质,有着广泛的物理背景。
Study on Propagating Mechanism and Quenching of Premixed Flames in Narrow Channels;
预混火焰在狭缝中的传播机理与熄灭条件的研究
quenching and the dead core problem,the blow-up results are derived for the fuel ignition models with agradient term,and which is similar to the models without the gradient term.
对带梯度项的热点火模型,应用上下解方法及爆破与熄灭、死核等问题的关系,得到了与不带梯度项时的模型相似的结果。
The propagation and quenching of unsteady premixed flames in narrow channels with cold walls are numerically investigated.
模拟了非稳态预混乙炔-空气火焰在冷壁面平板狭缝中的传播与熄灭,针对壁面散热和狭缝高度对火焰形状和火焰传播状态的影响进行了重点讨论。
The paper investigates the quenching problemfor coupled nonlinear degenerate parabolic systemwith time delays.
文章讨论了一类含时滞的退化抛物型方程组的解的熄灭问题 ,通过运用正则化方法和上下解的技巧 ,得到了解的存在性并且证明了存在唯一的一个临界长a ,使得当aa 时 ,方程组的解熄灭。
The quenching problem for coupled diffusion system with time delays is investingated and the past result is extended and strengthened.
讨论了一类时滞反应扩散方程组的熄灭问题,推广并加强了现有结果。
up anddie out Within a finite time by using the eigen─function method.
本文利用特征函数法,对两类非线性发展方程组的初边值问题,研究了其古典解在有限时间内爆破和熄灭的条件。
This paper considers the boundc ry value problems witll three type;of theboundary condit ions for nonl incar pseudo-hypcrbolic squat ions of generalized nerveconduction type, using thg cigenfunction mothod, the conditions for which the solutions blow up and die out in the finite time arc got.
本文考虑广义神经传播型非线性拟双曲方程具三类边界条件的初边值问题,利用特征函数法,得到了其解在有限时间内爆破和熄灭的条件。
It discusses how to blow up and die out of their solutions.
考虑一类非线性双曲抛物耦合方程组和一类非线性反应扩散方程组具有三类边界条件的初边值问题,讨论它们解的爆破与熄灭。
Global existence and quenching phenomena for a parabolic equation of the mean curvature type with nonlinear convection term;
一类平均曲率型抛物方程解的存在性和解的熄灭
Deriving the quenching phenomena to an initial-boundary value problem in a bounded domain in the R~n for the mean curvature equation with a nonlinear convection term:u_t-p{σ(|u|~2)u}+b(u)·u=0.
若初值u0∈Lq,q≥n,问题的解将在有限时刻熄灭,并且给出了解的L∞估计。
This dissertation is devoted to the global existence and quenching phenomena of the solution to a nonlinear parabolic equation of the mean curvature type and the blow-up conditions to another nonlinear parabolic equation.
本文研究了一类平均曲率型抛物方程解的整体存在性和解的熄灭现象及一类非线性抛物方程解的爆破条件。