This article mainly discussed the Turán result of cubic and maximum size of bipartite subgraph in cubic.
本文主要研究立方图的Turán结果,以及对立方图的最大二部子图的探讨。
In this paper, we show that the cubic of a connected graph with at least five vertices is cyclable if and only if this graph is not isomorphic to any even path.
图的可圈性是哈密尔顿性的一个推广,设G是有向图,如果对G的每一个定向D,都存在S(D)(?)V(G)使在D中改变所有恰与S(D)中一个顶点相关联的弧的方向后所得到的图为有向哈密尔顿图,则称G为可圈图,本文将证明至少含五个顶点的连通图G的立方图是可圈的当且仅当G不同构于任何一条偶路,该结果改进了Klostermeyer的三个定理。
A cubic graph is a finite simple connected graph each of whose verter-degree is equalto 3.
立方图是指每个顶点的次数都等于3的有限简单连通图,本文讨论了立方图的邻域复形的性质,证明了两个立方图是邻域同调的充要条件为它们的二分性相同并且D值相等。