In this paper We discussed bounded weak topology of the Banach spaces.
讨论Banach空间上的有界弱拓扑,证明了Banach空间上的有界弱拓扑为局部凸拓扑的充分必要条件是:Banach空间为自反的。
The result proves that with some Pinching conditions has finite topological type or even diffeomorphic to the Euclid Space.
应用比较几何的方法研究了完备非紧且具有特定曲率条件的黎曼流形,证明了在一定Pinching条件限制下,流形具有有限拓扑型或者微分同胚于Rn。
In the paper, we prove that every complete open manifold with nonnegative curvature must be of finite topological type.
本文给出完备非紧具非负曲率的Riemann流形具有限拓扑型的一个简单证