Under the only assumption of the continuity of strongly accretive mappings, and by virtue of the Holder continuity of th duality mapping Jp given by Prof.
在仅假设强增生映象的连续性下,利用徐宗本教授等人(1991年)给出的对偶映象Jp的Holder连续性,证明了具误差的Mann迭代法强收敛到这类变分包含的唯一解。
Under the only assumption of the continuity of strongly accretive mappings and without the condition βn→0(n→∞), by virtue of the Holder continuity of the duality mapping Jp given by Xu Zong-ben et al.
在仅假设强增生映象的连续性与没有条件βn→0(n→∞)下,利用徐宗本等人给出的对偶映象Jp的Holder连续性,证明了具误差的Ishikawa迭代程序强收敛到这类变分包含的唯一解。
The author presents a related result that the new Ishikawa iterative with errors converges to a solution of the nonlinear equation Tx = f when T is Lipschitz strongly accretive mapping.
本文给出一个新的具误差的 Ishikawa 迭代程序强收敛到 T 的唯一不动点,并给出一个涉 及 Lipschitz 强增生映象 T 的非线性方程 Tx = f 的解的迭代逼近。
This article studys the Ishikawa iterative method with errors converges storongiy to the solutions of the equations for Φ-strongly accretive mappings in general Banach spaces,the results presented in this paper improve and extend relevant results of Chidume C.
在任意的实Banach空间中,研究Φ-强增生映象T的方程的解的具误差Ishikawa迭代序列的逼近问题,改进并推广了Chidume CE,Osilike M O中的相关研究结果,使结论更具一般性。