Element order is an important quantity in finite groups,which influences the integral property of finite groups profoundly.
元素的阶是有限群中重要的算术量,它深刻地反映了有限群的整体性质。
To investigate how element orders influence the structure of a finite group is an important subject in group theory.
考察元素的阶如何影响有限群的结构是群论中的一个重要课题 。
This thesis mainly considers how the arithmetical conditions of conjugacy classes and element orders of a finite group influence its structure respectively.
本文主要研究有限群中共轭类和元素的阶的算术条件对群结构的影响。