On the integer represented as the product of k prime numbers in arithmetic progression;
关于表整数为算术数列中k个素数的乘积
This paper presents the number n of representations of the nonzero integer z∈Z-2 as the difference of two squares of integers in Z-2,and the number n of representations of the nonzero integer z∈Z-2 as(z=(x~2+2y~2)),where x,y∈x~2+2y~2.
给出了[-2]中的非零整数表示为[-2]中的两整数平方差的表示种数,还给出了[-2]中的非零整数表示为x2+2y2(其中x,y∈[-2])形式的表示种数。
This paper utilizes the Reciprocal Law Two Times to prove that the rational number of a kind of form is not the integer,and proves that the number of another kind of prime is limitless.
利用二次互反定律证明了某类形式的有理数不是整数,并且证明了某类形式的素数的个数是无限的。