We introduce and research strong efficiency in vector optimization with set valued maps,and get a series of results in terms of scalarization,Lagrange multipliers,Lagrange dual and connexity of the set of strongly efficient points.
引进并较为系统地研究集值映射向量优化问题的强有效性,获得了包括标量化、Lagrange乘子、Lagrange型对偶及强有效点集的连通性等方面的几个结
The strong efficiency and strict efficiency play the important roles in optimization theory.
强有效性和严有效性是优化理论中2个重要的基本概念,目前已得到对凸集而言这2种有效性是等价的结论。
Under the nearly cone-subconvexlike set-valued maps,relations of strong efficient solutions and Kuhn-Tucker saddle point of set-valued optimization problem are dicussed.
首先在局部凸Hausdorff拓扑向量空间中定义了集值优化问题的Kuhn-Tucker鞍点,在近似锥-次类凸集值映射下,讨论了集值优化问题的强有效解与Kuhn-Tucker鞍点之间的关系。
The strong boundedness,boundedness, continuous of the operator T;
算子T的强有界、有界和连续性问题
The strong boundedness、boundedness、continuous of the operator T in F~*-space;
赋准范空间中算子T的强有界、有界和连续性
The concept of strong-efficiency is put forward and the properties referred to EC~2GS~2 model are proved.
在C2GS2模型的基础上建立了一个扩展的C2GS2模型———EC2GS2,提出了强有效的概念,论证了相关理论。