On the basis of Gramer rule,a new type flow graph-GW graph is proposed for solving the problem of liner flow graph in this paper.
以Gramer法则为理论基础,提出了一种新型线性流图-GW图。
In the first chapter, we study the strong regularity of SF-rings whose every maximal one-sided ideal is generalized weak ideal and prove that R is strongly regular ring if and only if R is a left SF-ring whose every maximal left(right) ideal is a GW-ideal.
证明了:环R是强正则环当且仅当R是左SF-环且R的每个极大左(右)理想是GW-理想。
The first chapter, main instead " duo-ring " condition of " every maximal left ideal is GW-ideal " condition,study strongly regularities of GP-V-ring on this condition.
第一章主要将“duo-环”条件替换成“每一极大左(右)理想是GW-理想”条件,研究在此条件下,GP-V-环的强正则性,证明了:(1)R是强正则环当且仅当R是左GP-V-环且R的每一极大左理想是广义弱理想;(2)R是强正则环当且仅当R是左GP-V-环且R的每一极大右理想是广义弱理想,第二章,主要将GP-V-环上一些结果推广到GP-V′-环上,讨论GP-V′-环的正则性,证明了:(1)R是左自内射正则环且Soc(_RR)≠0当且仅当R是包含内射极大左理想的GP-V′-环,且Soc(_RR)=Soc(R_R);(2)R是正则环且每一极大本质左理想是理想当且仅当R是左GP-内射的左GP-V′-环且每一极大本质左理想是理想。
By using some properties of GW-ideals and W-ideals, we obtain some conditions for a GP-V’- ring to be a (strongly) regular ring.
利用GW-理想和W-理想的性质及方法,得到了GP-V’-环是(强)正则环的一些条件,推广了文献[3,6]中的相关结果。
The Study of Development Strategy for Lanzhou GW CO., LTD;
兰州GW股份有限公司(简称GW公司)是由甘肃机械系统内5家知名企业联合“捆绑”组建的上市公司,由于母子公司各职能定位模糊,未进行内部经营管理资源的整合,导致GW公司整体经营管理体制不顺,所属企业各自为政,未形成发展合力。