The concept of irreducible linear permutations is proposed.
提出了不可约线性置换的概念,利用线性代数理论研究了不可约线性置换σ的性质,利用这些性质给出了最大线性置换的一个刻画,进而证明了不可约线性置换σ关于Fn2中任意非零元素的轮换长度一定等于σ的特征多项式的周期,最后利用群在集合上作用的有关结果给出了不可约线性置换的一个计数公式。
Polycyclic semigroup was investigated,the permutation property of the polycyclic semigroup was discussed,and it was proved by means of full-inductive method that polycyclic semigroup has permutation property n,n≥3.
研究多循环半群,讨论多循环半群的置换性质,用完全归纳法证明当n≥3时,多循环半群有置换性质^Pn。
The permutation property of the bicyclic semigroup has been discussed, and the results have shown that the bicyclic semigroup has P (n≥4).
主要讨论了双循环半群的置换性质 ,证明了当 n≥ 4时 ,双循环半群有置换性质 P*