1.Then we find the non-symplectic symmetry of the Hamiltonian curved surface, and present a qualitative explanation to the results.
我们从曲面形貌的非偶对称性对调制现象作出了定性的解释。
2.The connotation and denotation representations of pseudo-symplectic space about symplectic space are demonstrate.
论述过程同时给出了伪辛空间关于辛空间的内蕴和外延表示式。
3.The essential property and developmental course of Euclidean space, symplectic space and bogus symplectic space are studied.
论述欧氏空间、辛空间、伪辛空间的本质属性及演变过程。
4.symplectic space and Euclidean space are the internal spaces of bogus symplectic space.
而辛空间与欧氏空间是伪辛空间的内蕴空间的结论。
5.In this paper, Lie group, Symplectic manifolds, Groupoids are treated as fundamental research subjects .
本文主要以李群、辛流形及群胚等为基本研究对象。
6.The isomorphic conditions of some lattices generated by transitive sets of subspace under finite pseudo-symplectic groups are discussed.
文章讨论了伪辛群作用下子空间轨道生成的格的同构条件。
7.Two-dimensional problems of thermo-viscoelasticity in the symplectic system were described.
在辛体系下描述了二维热粘弹性力学问题。
8.The symplectic method provides a way for solving other problems.
这种辛方法也为求解其他问题提供了一条路径。
9.The symplectic method and numerical method provide an idea for other researches also.
这种辛方法和数值算法为解决其他问题提供了一种可行的思路。
10.Meanwhile, an effective method for end conditions was given in the symplectic space.
同时给出了一种辛空间中处理端部条件问题的有效方法。