1.A poset is called a symmetric chain decomposition if the poset can be expressed as a disjoint union of symmetric chains.
如果一个偏序集可以分解成不相交的对称链之并,则称此偏序集具有对称链分解。
2.In this paper , we investigate the interval topology on a poset .
本文主要研究了偏序集上的区间拓扑的一些性质。
3.How to apply poset theory to solve such problem?
怎样运用偏序集理论的手法去解决该问题呢?
4.But what is the direct relation between poset theory and the containment relations between different kinds of greedoids?
但是偏序集理论与不同种广义拟阵间的包含关系的直接联系是什么呢?
5.It is proved that the prospect spaces are a poset, and with lattice order characteristic;
证明了展望空间按照极大多数优于原则是一个偏序集,具有格序特征;