1.【数】对数
1.in mathematics, the number of times that a number must be multiplied by itself in order to produce a particular number
1.Logarithms were invented to simplify cumbersome calculations, since exponents can be added or subtracted to multiply or pide their bases.
发明对数是为了简化繁琐的计算,因为用幂指数的相加或相减可以等同于它们的基数的相乘或相除。
2.Analysis on the logarithms model showed that, when the density increased to the certain limit, the crowding index inclined to a constant.
从对数模型分析,当密度增加到一定限度时,聚集块指标趋于一个常数。
3.It was also programmed with subroutines for logarithms and trigonometry.
它也用编好的子程序计算对数和三角。
4.Same with logarithms, roots, transcendentals, and other fundamental mathematical representations that appear nearly everywhere.
同样的,对数,根,超越数,和其他到处出现的基本数学原理。
5.Logs base e (natural logarithms) appear in the calculation of compound interest, and numerous scientific and mathematical applications.
以e为底的对数(自然对数)出现在复合计算以及大量科学和数学应用程序中。
6.Let me illustrate where logarithms arose.
让我举例说明对数从那里产生。
7.German astronomer Johannes Kepler used these modern logarithms to calculate the orbit of Mars at the start of the 17th century.
德国天文学家克卜勒于17世纪初使用这种现代化的对数计算火星轨道。
8.An eminent mathematician, he is regarded as the inventor of the system of logarithms.
作为一名受人尊敬的数学家,龙比亚被誊为对数的发明者。
9.Logarithms are defined with respect to an arbitrarily chosen constant.
对数是相对于一个任选的常数来确定的。
10.It will be assumed that the reader is familiar with logarithms and trigonometric functions .
我们还希望读者能熟悉对数和三角函数。